

Genetic mosaicism in the *Drosophila* intestine – from somatic mutations to endogenous retrotransposon activity

Psiloritis 2006

Psiloritis 2006

Genome plasticity influences cell function *in vivo*

Selected refs:

- Blood (Laurie, Nat Gen, 2012; Jacobs, Nat Gen, 2012; Genovese, NEJM, 2014; Jaiswal, NEJM, 2014; Lee-Six, Nature, 2018)
- Skin (Martincorena, Science, 2015)
- Esophagus (Martinocerena, Science 2018)
- Liver (Bruner, Nature, 2019)
- Colon (Lee-Six, Nature, 2019)

Genome plasticity influences cell function *in vivo*

Selected refs:

- Blood (Laurie, Nat Gen, 2012; Jacobs, Nat Gen, 2012; Genovese, NEJM, 2014; Jaiswal, NEJM, 2014; Lee-Six, Nature, 2018)
- Skin (Martincorena, Science, 2015)
- Esophagus (Martinocerena, Science 2018)
- Liver (Bruner, Nature, 2019)
- Colon (Lee-Six, Nature, 2019)

Genome plasticity influences cell function *in vivo*

Mechanisms ?

Selected refs:

- Blood (Laurie, Nat Gen, 2012; Jacobs, Nat Gen, 2012; Genovese, NEJM, 2014; Jaiswal, NEJM, 2014; Lee-Six, Nature, 2018)
- Skin (Martincorena, Science, 2015)
- Esophagus (Martinocerena, Science 2018)
- Liver (Bruner, Nature, 2019)
- Colon (Lee-Six, Nature, 2019)

The *Drosophila* intestine – model system

Aging

Somatic mutation

Aging

Somatic mutation

Notch tumor suppressor inactivation

Aging Somatic mutation Notch tumor

suppressor inactivation Notch -/-

Aging

Somatic mutation

Notch tumor suppressor inactivation Notch -/-

Siudeja et al, 2015; Riddiford et al, 2021

Aging

Somatic mutation

Notch tumor suppressor inactivation Notch -/-

- Structural variants (deletions / complex rearrangements) - Point mutations - Loss of heterozygosity (LOH)

...

Siudeja et al, 2015; Riddiford et al, 2021

Whole genome sequencing

(Illumina, 2x100bp or 2x150bp)

Aging

Somatic mutation

Notch tumor suppressor inactivation

- Point mutations

...

Notch -/clonal expansion Pros

Whole genome sequencing (Illumina, 2x100bp or 2x150bp)

Siudeja et al, 2015; Riddiford et al, 2021

- Loss of heterozygosity (LOH)

de novo insertions of transposable elements

Retrotransposons - mobile genetic elements

Retrotransposons - mobile genetic elements

Genome:

Retrotransposons in the soma

Retrotransposons in the soma

Retrotransposons in the soma

Selected refs: Iskow et al. (2010); Baillie et al. (2011); Lee et al. (2012); Solyom et al. (2012); Rodic et al. (2015); Evrony et al. (2016)

Retrotransposon insertions in *Notch* in spontaneous neoplasia

Short- and long-read DNA-seq – revealing genome-wide TE mobility

Aging

Somatic mutation

Notch tumor suppressor inactivation Notch -/-

Long-read (ONT) DNA-seq

Short-read (Illumina) DNA-seq

Siudeja, van den Beek et al. (2021)

Short- and long-read DNA-seq – revealing genome-wide TE mobility

Conclusion 1

- Revealed prevalent genome instability and retrotransposition occurring in the fly midgut
- TE insertions enriched in open chromatin, genic or regulatory regions
- May lead to phenotypic consequences (*Notch* inactivation -> neoplasia formations)

• Ongoing/future questions:

Conclusion 1

- Revealed prevalent genome instability and retrotransposition occurring in the fly midgut
- TE insertions enriched in open chromatin, genic or regulatory regions
- May lead to phenotypic consequences (*Notch* inactivation -> neoplasia formations)

• Ongoing/future questions:

Precise TE landscape using long-read sequencing

Selective somatic activity of LTR-retroelements

Fixed TE insertions per subfamily

Selective somatic activity of LTR-retroelements

. . .

Is retrotransposon activity unleashed upon tissue aging?

Selective somatic activity of LTR-retroelements

• Basel level of transposition is limited to very few retroelements

• No important increase in TE mobility (rates or active families) in the aging gut (consistent with Yang et al. 2022 and Schneider et al. 2023)

Impact on the tissue aging ?

325 350

300

Why some retroelements are active (while not others)?

Why some retroelements are active (while not others)?

• Recover and analyze sequences of somatic *rover* insertions from long-read data

• Compare somatic insertions with all fixed *rover* copies present in the genome (based on long-read data) Total = 19 copies

• Compare somatic insertions with all fixed *rover* copies present in the genome (based on long-read data) Total = 19 copies

• Compare somatic insertions with all fixed *rover* copies present in the genome (based on long-read data) Total = 19 copies

Transcriptome analysis supports expression of the active copy

- Mobility of the *rover-LTR* subfamily is restricted to one genomic locus
- The first example of a "hot" LTR-retrotransposon locus active in a somatic tissue

Why?

rover2R14M 'hot' locus has little sequence variation in the regulatory region

Sequence variants?

rover2R14M 'hot' locus has little sequence variation in the regulatory region

fkh

fkh ttk

cad CTCF

-> Activity not (only) due to TE sequence features but "local environment"?

pol

env

LTR

Sequence

rover-2L-18

Ð

The active *rover* locus found in permissive chromatin

• Insertion in permissive chromatin likely allows expression

The active *rover* locus found in permissive chromatin

• Insertion in permissive chromatin likely allows expression

The active *rover* locus found in permissive chromatin

Insertion in permissive chromatin likely allows expression

Chromatin states, ISC

•

• Local genomic environment permits the expression (and the mobility) of the "hot" *rover2R14M* locus

rover2R14M coopts upstream genomic sequence for gut expression

rover2R14M co-opts upstream genomic sequence for gut expression

rover2R14M co-opts upstream genomic sequence for gut expression

Do tissue-specific TFs drive *rover2R:14M* expression ?

Do tissue-specific TFs drive *rover2R:14M* expression ?

S2 cells Luciferase expression reporters:

Escargot may drive *rover2R:14M* expression via the upstream sequence

Escargot may drive *rover2R:14M* expression via the upstream sequence

Escargot may drive *rover2R:14M* expression via the upstream sequence

Conclusion 2

- Long-read ONT sequencing allowed full-length analysis of fixed mobile throughout different adult ages
- No significant increase in retrotransposon mobility in the aging gut
- Basel level of transposition is limited to very few retroelements
- We identify a "hot" somatically active LTR-retroelement : *rover-2R:14M*
- rover2R14M co-opts upstream genomic sequence for gut expression thr

• rover-2R:14M is a non-reference polymorphic TE locus

- rover-2R:14M is a non-reference polymorphic TE locus
- TE polymorphism is large in populations

How does this variation contribute to somatic TE activity ?

... and phenotypic differences ?

Working on TEs ? Mind the genetic backgrounds !

Around 1500 estimated private insertions / human genome

(C. Beck lab, unpublished communication)

Thank You !

Inserm

institut**Curie**

Allison Bardin and the team

Past members: Natalia Rubanova Marius van den Beek Nick Riddiford Bioinformatics: Nicolas Servant

Fly facility: Bénédicte Leveille Nizerolle Sebastian Bordeaux Montrieux

PSL 🖈

Sequencing Facility: Sonia

Louis Barolle Fabienne Chalvet Sophie Netter Mickael Poidevin Darshika Singh Maxence de Taffin de Tilques

Fly facility: Delphine Petit NGS Sequencing Facility

Imaging Facility

