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Genome plasticity influences cell function in vivo 



Intestinal Stem Cells (ISCs) ECs EEs

The Drosophila intestine – model system
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• Able to propagate in the host genomes

• Present in many copies

• Mostly repressed pre- and post-transcriptionally

BUT: 

• Some transcribed and a fraction able to self-propagate

Retrotransposons - mobile genetic elements
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?

Early development Neuronal lineages

Activity reported in diverse tissues

Open questions:

Mechanisms of activity?

Impact on somatic lineages? 

Selected refs: Iskow et al. (2010); Baillie et al. (2011); Lee et al. (2012); Solyom et al. (2012); Rodic et al. (2015); Evrony et al. (2016)
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Short- and long-read DNA-seq – revealing genome-wide TE mobility
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• Somatic TE insertion sites spread genome-wide

• Found preferentially in genic regions and open, transcriptionally active 

chromatin

Pre-insertion 

site choice 

Post-insertion 

tissue selection+
Siudeja, van den Beek et al. (2021)
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• Ongoing/future questions:

1 Regulation ? 2 Impact ?

Conclusion 1

• Revealed prevalent genome instability and retrotransposition occurring in the fly midgut

• TE insertions enriched in open chromatin, genic or regulatory regions

• May lead to phenotypic consequences

(Notch inactivation -> neoplasia formations)
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Precise TE landscape using long-read sequencing
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Is retrotransposon activity unleashed upon tissue aging?



Selective somatic activity of LTR-retroelements

RESULTS – Figure 1

Somatic TE insertions per subfamily
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rover-LTR copia-LTR

5d  25d  55d 5d  25d  55d• Basel level of transposition is limited to very few retroelements

• No important increase in TE mobility (rates or active families) in the aging gut 

(consistent with Yang et al. 2022 and Schneider et al. 2023)

• Impact on the tissue aging ?



Why some retroelements are active (while not others)? 



Why some retroelements are active (while not others)? 

rover-LTR

G
u
t 

s
o
m

a
ti
c
 i
n
s
e
rt

io
n
s
 /

 1
0
0
0
 r

e
a
d
s
 >

2
5
k
b 19 full-length rover-LTR 

elements in the genome:

How many active?



canonical sequence:

somatic inserts:

Informative sequence variants

• Recover and analyze sequences of somatic rover insertions from long-read data 

Identifying the active rover-LTR locus
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Transcriptome analysis supports expression of the active copy

Short-read RNA-seq Long-read RNA-seq (ONT)

• Mobility of the rover-LTR subfamily is restricted to one genomic locus

• The first example of  a ”hot” LTR-retrotransposon locus active in a somatic tissue Why ?



rover2R14M ‘hot’ locus has little sequence variation in the regulatory region

RESULTS – Figure 3

Sequence variants?



rover2R14M ‘hot’ locus has little sequence variation in the regulatory region

RESULTS – Figure 3

rover - 5’ 1kb

rover-2R-14M

rover
(consensus)

rover-2R-21M

rover-2L-18

-> Activity not (only) due to TE 

sequence features but “local 

environment” ?



The active rover locus found in permissive chromatin
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The active rover locus found in permissive chromatin
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Progenitors (ISC)
Differentiated (EC)

rover-2R:14M -> Active

bound by Pol II + Brahma

• Insertion in permissive chromatin likely allows expression

Cell type-specific 
chromatin states:

The active rover locus found in permissive chromatin

(Gervais et al, 2019; Josserand et al, 2023)

• Local genomic environment permits 

the expression (and the mobility) of 

the “hot” rover2R14M locus



rover2R14M coopts upstream genomic sequence for gut expression
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rover2R14M co-opts upstream genomic sequence for gut expression
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As shown before, with functional small RNA 

silencing pathways 
(Wang et al, 2022)



rover-2R:14M Mapped enhancers 
(whole organism, SEA – Chen et al, 2019

ATAC-seq picks 
(gut progenitor cells- Tauc et al, 2021)

ChIP-seq picks 
(different tissues/stages - ModENCODE)

Gut expression

Do tissue-specific TFs drive rover2R:14M expression ?
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Do tissue-specific TFs drive rover2R:14M expression ?



Escargot may drive rover2R:14M expression via the upstream sequence
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- Stem cell maintenance

Other candidate TFs ?

(ongoing)



Conclusion 2

• Long-read ONT sequencing allowed full-length analysis of fixed mobile element copies and somatic insertions

throughout different adult ages

• No significant increase in retrotransposon mobility in the aging gut

• Basel level of transposition is limited to very few retroelements

• We identify a “hot” somatically active LTR-retroelement  : rover-2R:14M 

• rover2R14M co-opts upstream genomic sequence for gut expression through TF binding

Rubanova N et al. (in preparation)



Impact ?

• rover-2R:14M is a non-reference polymorphic TE locus



Impact ?

• rover-2R:14M is a non-reference polymorphic TE locus

• TE polymorphism is large in populations

How does this variation contribute to somatic TE 

activity ?

… and phenotypic differences ?

Around 1500 estimated private insertions / 

human genome 

(C. Beck lab, unpublished communication)

Working on TEs ? 

Mind the genetic backgrounds !
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